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Learning objectives

Basic idea of

e gradient descent

e stochastic gradient descent

e method of momentum

e using an adaptive learning rate
e sub-gradient

Application to

e linear regression and classification



Optimization in ML

The core problem in ML is parameter
estimation (aka model fitting), which
requires solving an optimization
problem of the loss/cost function

Optimization is a huge field

e discrete (combinatorial) vs continuous variables
e constrained vs unconstrained

bold marks
the settings [
we consider
in this class

e for continuous optimization in ML:

convex Vs non-convex
looking for local vs global optima?
analytic gradient?

analytic Hessian?

stochastic vs batch

smooth vs non-smooth
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Optimization in ML Fasw)

The core problem in ML is parameter | N
estimation (aka model fitting), which () = 3 2y W™, (@5 0))
requires solving an optimization w* = argmin,, J(w)
problem of the loss/cost function

model:

cost

function:

Linear Regression: Logistic Regression:
folz)=w'z :RY - R ) = fu(z) =c(w'z) : RP — {0,1}
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partial derivatives: J'w == n Yy y a5
Owa N 2 ) d how to find w*

gradient: vector of all partial derivatives: VJ(’w) = % Zn (g(n) — y(n) )CL‘(n) given VJ(fw)7



Gradient

for a multivariate function J(wg, w1 )

partial derivatives instead of derivative

0

A 7 J(wg,w1+e)—J(w0,w1)
3—,w1e](’w07 wl) = lim, .

we can estimate this numerically if needed
(use small epsilon in the formula above)

gradient: vector of all partial derivatives

VI(w) = (5o J (W), g J (w)]”
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Gradient descent

an iterative algorithm for optimization

e starts from some wi% new notation!
e update using gradient wi™ « with — oV J(wl?)

steepest descent direction l

o learning rate
converges to a local minima

image from here

cost function
(for maximization : objective function )



Convex function

a convex subset of RY intersects any line in

at most one line segment convex

not convex

a convex function is a function for which the epigraph is a convex set

A epigraph: set of all points above the graph

FOw+ (1= Nw') < Af(w)+ (1 =Nf(w) 0<A<1




Minimum of a convex function

Convex functions are easier to minimize:

e critical points are global minimum (t+1} o “
e gradient descent can find it w cw aVJ(w')

convex non-convex: gradient descent may find a local optima

J(w) o
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a concave function is a
negative of a convex function
(easy to maximize) 8

image from here


https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Recognizing convex functions

a constant function is convex f(z) =
a linear function is convex f(z) = wT

. i . . oy s 2
convex if second derivative is positive everywhere &%f>0 Vz

DEIEIESY 2%, e, —log(z), —/Z 10 & — 0= -logbo)

zlog(x),z > 0 ] o
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Recognizing convex functions

sum of convex functions is convex maximum of convex functions is convex
— fix)=e — fLx)=¢
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sum of squared errors
J(w) = || Xw —y|f = 3, (w'z™ —y)?

note this is not convexinx 10



Recognizing convex functions

composition of convex functions is generally not convex

(—log(z))’

however, if f, g are convex, and g is non-decreasing,
then g(f(x)) is convex

e/ (@)

for convex f

Composition with affine map (linear function) is also
convex, e.g. f(w'z —y) if f is convex
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Recognizing convex functions
is the logistic regression cost function convex in model parameters (w)?

: linear
non-negative

J(w) = % 22721 y™ log (1 + e_'wa) + (1 — y('"’)) log (1 + ewT"”)

checking second derivati
2 log(1 + ) =
927 108 o

sum of convex functions

ve

(l_fefz)2 2 O
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Gradient for linear and logistic regression

i . _ 1 n) ((n n)y __ 1 T (5
inboth cases:  VJ(w) =% >, 2 )(y( ) — yf )) = 1XT(§—y)
DxN Nx1 Nx1
linear regression: § = w'
1 def gradient( )
. . . ? N,D = x.shape
logistic regression: 7 = O'(wT ) P vh = losisticpdot(x, )

return grad

time complexity: O(ND)

(two matrix multiplications)

compared to the direct solution for linear regression: O(ND2 -+ D3)
gradient descent can be much faster for large D

13



GCradient Descent

implementing gradient descent is easy!

def GradientDescent( # N x D
y, # N
1r= , # learning rate
eps= , # termination codition

)
N,D = x.shape
w = np.zeros(D)
g = np.inf
while np.linalg.norm(g) > eps: ¢
g = gradient(x, y, w)
w =w - lr*g
return w

» Some termination condition:

some max #iterations

small gradient

a small change in the objective
increasing error on validation set

(one way to avoid overfitting) 14



GD for linear regression
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using direct solution method

/

w=(XTX)1XTy~ —3.2
Y = W
Yy = —3T
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GD for linear regression
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Learning rate «

Learning rate has a significant effect on GD

example, D=1

linear regression

example, D=2

linear regression
50 gradient steps

a=.01 a=.05
J) Jtw) too small: may take a long time to
converge
too large: it overshoots or even
diverges
w w

do a grid search usually between 0.001 to .1 to find the right value, look at the training curves
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Stochastic Gradient Descent

we can write the cost function as an average over instances

1
J(w) — N anl Jn (w) cost for a single data-point Tu(w) — .
e.g. for linear regression n\W

the same is true for the partial derivatives w; ( )— N Zn 1 awj

therefore VJ(w) =Ep[VJ,(w)]

In(w)

18



Stochastic Gradient Descent

ldea: use stochastic approximations VJ,(w) in gradient descent

stochastic gradient update
w <+ w— aVd,(w)

the steps are "on average" in the right
direction

each step is using gradient of
a different cost, J, (w)

each update is (1/N) of the
cost of batch gradient

e.g., for linear regression O(D)

VI, (w) = z™ (w2 — y)

contour plot of the cost function

batch gradient update
w+—w—aVJ(w)

with small learning rate: guaranteed
improvement at each step



https://jaykanidan.wordpress.com/
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idea: schedule to have a smaller learning rate over time



https://cs231n.github.io/neural-networks-3/#anneal
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Oscillations

gradient descent can oscillate a lot!

3

each gradient step is prependicular to isocontours

/

in SGD this is worsened due to noisy gradient estimate
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Momentum

to help with oscillations:

e use a running average of gradients
* more recent gradients should have higher weights

Aw' « BAwWE 4 (1 — B) VI (wit—1)

I
w{t} % w{t_]-} — Aw{t} momentum of 0 reduces to SGD

common value > .9

is effectively an exponential moving average

Awl™h = ST aT1(1 — B)V g (wh)

there are other variations of momentum with similar idea P

weight for the most recent gradient

weight for the oldest gradient

(1-8)
1-p)s""

t=1

24



Momentum

Example: logistic regression
no momentum with momentum

a=.5,8=0,|B =8 oo = 5,8 =99, |B| = 8

see the beautiful demo at Distill https://distill.pub/2017/momentum/ o5


https://distill.pub/2017/momentum/

Adag rad (Adaptive gradient)

use different learning rate for each parameter Wy
also make the learning rate adaptive

S{t} « S{t 1} 4 88 J(w{t 1})

sum of squares of derivatives over all iterations so far (for individual parameter)

w;{Zt} < w;{it_l} — 0 J(w{t L

/5 0

the learning rate is adapted to previous updates
€ is to avoid numerical issues

useful when parameters are updated at different rates

(e.g., sparse data when some features are often zero when using SGD) o6



eter
o= .1, 1,T = 80,000, ¢ =
t

)
m
N
DN _
oblem: the learning rate goes to zero




RMSprOp (Root Mean Squared propagation)

solve the problem of diminishing step-size with Adagrad

® US€E exponential moving average instead of sum (similar to momentum)

instead of Adagrad: S;l{t} — S;l{tfl} + LJ(w{t—l})2

owy

S 4 SUL 4 (1 — 4) VI (wlt1)?
with W{t_1} — 2 VJ(wit) identical to Adagrad

A/ St te

note that St} here is a vector and with the square root is element-wise
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the default algorithm in practice
Ada m (Adaptive Moment Estimation)
two ideas so far:

1. use momentum to smooth out the oscillations

both use exponential moving averages
2. adaptive per-parameter learning rate

Adam combines the two:

M BlM{t—l} +(1- ﬁl)vj(w{t—l}) identical to method of momentum

(moving average of the first moment)
Sttt p,stt-1) 4 VJ (w12 identical to

R (moving average of the second moment)
w{t} {— w{t_l} .« M{t}
v/ S{th te

since M and S are initialized to be zero, at early stages they are biased towards zero

Mt i\l{ti g{t} . 1S{t}t for large time-steps it has no effect
—bi —b3 for small t, it scales up numerator 29



In practice

the list of methods is growing ...

they have recommended range of parameters

e learning rate, momentum etc.
still may need some hyper-parameter tuning

these are all first order methods

e they only need the first derivative
e 2nd order methods can be much more
effective, but also much more expensive

logistic regression example
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Summary

learning: optimizing the model parameters (minimizing a cost function)
use gradient descent to find local minimum

e easy to implement (esp. using automated differentiation)
o for convex functions gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient

e Robbins Monro condition: reduce the learning rate to help with the noise
better (stochastic) gradient optimization
e Momentum: exponential running average to help with the noise

e Adagrad & RMSProp: per parameter adaptive learning rate
e Adam: combining these two ideas
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