Gradient Descent Methods

Reihaneh Rabbany

‘é * McGill

School of Computer Science

(Fall 2025) «

Learning objectives

Basic idea of

e gradient descent

e stochastic gradient descent

e method of momentum

e using an adaptive learning rate
e sub-gradient

Application to

e linear regression and classification

Optimization in ML

The core problem in ML is parameter
estimation (aka model fitting), which
requires solving an optimization
problem of the loss/cost function

Optimization is a huge field

e discrete (combinatorial) vs continuous variables
e constrained vs unconstrained

bold marks
the settings [
we consider
in this class

e for continuous optimization in ML:

convex Vs non-convex
looking for local vs global optima?
analytic gradient?

analytic Hessian?

stochastic vs batch

smooth vs non-smooth

e . T = e = Y e
Optimization in ML Fasw)

The core problem in ML is parameter | N
estimation (aka model fitting), which () = 3 2y W™, (@5 0))
requires solving an optimization w* = argmin,, J(w)
problem of the loss/cost function

model:

cost

function:

Linear Regression: Logistic Regression:
folz)=w'z :RY - R) = fu(z) =c(w'z) : RP — {0,1}

U=]
Jo =7 2, 2(y™ — §™)? Jw =% >, —ylog(g™) — (1 — y™)log(1 — §™)

| _ 1 ~(n) . (n)}.,.(7)
partial derivatives: J'w == n Yy y a5
Owa N 2) d how to find w*

gradient: vector of all partial derivatives: VJ(’w) = % Zn (g(n) — y(n))CL‘(n) given VJ(fw)7

Gradient

for a multivariate function J(wg, w1)

partial derivatives instead of derivative

0

A 7 J(wg,w1+e)—J(w0,w1)
3—,w1e](’w07 wl) = lim, .

we can estimate this numerically if needed
(use small epsilon in the formula above)

gradient: vector of all partial derivatives

VI(w) = (5o J (W), g J (w)]”

%
P i
s
* L
"/

T T T

Gradient descent

an iterative algorithm for optimization

e starts from some wi% new notation!
e update using gradient wi™ « with — oV J(wl?)

steepest descent direction l

o learning rate
converges to a local minima

image from here

cost function
(for maximization : objective function)

Convex function

a convex subset of RY intersects any line in

at most one line segment convex

not convex

a convex function is a function for which the epigraph is a convex set

A epigraph: set of all points above the graph

FOw+ (1= Nw') < Af(w)+ (1 =Nf(w) 0<A<1

Minimum of a convex function

Convex functions are easier to minimize:

e critical points are global minimum (t+1} o “
e gradient descent can find it w cw aVJ(w')

convex non-convex: gradient descent may find a local optima

J(w) o

/ ~
—

T Yy

a concave function is a
negative of a convex function
(easy to maximize) 8

image from here

https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Recognizing convex functions

a constant function is convex f(z) =
a linear function is convex f(z) = wT

. i . . oy s 2
convex if second derivative is positive everywhere &%f>0 Vz

DEIEIESY 2%, e, —log(z), —/Z 10 & — 0= -logbo)

zlog(x),z > 0] o

0.0 1
a:“,:c>0,a>1 -0.5 1
_lD.

-15 1

Recognizing convex functions

sum of convex functions is convex maximum of convex functions is convex
— fix)=e — fLx)=¢

30 120

— fix) =filx) + fa(x)

=== fix) =max{fi(x), fz(x)}
100

80
60
40

20

0
-100 -0.75 -0.50 -0.25 000 025 050 075 100 -4 -2 0 2 4

sum of squared errors
J(w) = || Xw —y|f = 3, (w'z™ —y)?

note this is not convexinx 10

Recognizing convex functions

composition of convex functions is generally not convex

(—log(z))’

however, if f, g are convex, and g is non-decreasing,
then g(f(x)) is convex

e/ (@)

for convex f

Composition with affine map (linear function) is also
convex, e.g. f(w'z —y) if f is convex

25

20

15

10

05

0.0

— filx)= —log(x)

— fix) =f(fi(x)) = log(x)?

-/

— filx)=*

— hly)=¢

— fix) =f(fi(x)) ="

-1.00 -0.75 -050 -0.25 000 025 050 075

100

11

Recognizing convex functions
is the logistic regression cost function convex in model parameters (w)?

: linear
non-negative

J(w) = % 22721 y™ log (1 + e_'wa) + (1 — y('"’)) log (1 + ewT"”)

checking second derivati
2 log(1 +) =
927 108 o

sum of convex functions

ve

(l_fefz)2 2 O

12

Gradient for linear and logistic regression

i . _ 1 n) ((n n)y __ 1 T (5
inboth cases: VJ(w) =% >, 2)(y() — yf)) = 1XT(§—y)
DxN Nx1 Nx1
linear regression: § = w'
1 def gradient()
. . . ? N,D = x.shape
logistic regression: 7 = O'(wT) P vh = losisticpdot(x,)

return grad

time complexity: O(ND)

(two matrix multiplications)

compared to the direct solution for linear regression: O(ND2 -+ D3)
gradient descent can be much faster for large D

13

GCradient Descent

implementing gradient descent is easy!

def GradientDescent(# N x D
y, # N
1r= , # learning rate
eps= , # termination codition

)
N,D = x.shape
w = np.zeros(D)
g = np.inf
while np.linalg.norm(g) > eps: ¢
g = gradient(x, y, w)
w =w - lr*g
return w

» Some termination condition:

some max #iterations

small gradient

a small change in the objective
increasing error on validation set

(one way to avoid overfitting) 14

GD for linear regression

10 A

_10 -

—20 1

—30 1

—40 A

o e—— (2™, —32(4 noise)

i

using direct solution method

/

w=(XTX)1XTy~ —3.2
Y = W
Yy = —3T

15

After 22 steps witt1} « ith —

w0

0

10 A

—-10 41

_20 4

_30 4

—-40 1

GD for linear regression

VJ(with)

data space

16

Learning rate «

Learning rate has a significant effect on GD

example, D=1

linear regression

example, D=2

linear regression
50 gradient steps

a=.01 a=.05
J) Jtw) too small: may take a long time to
converge
too large: it overshoots or even
diverges
w w

do a grid search usually between 0.001 to .1 to find the right value, look at the training curves

17

Stochastic Gradient Descent

we can write the cost function as an average over instances

1
J(w) — N anl Jn (w) cost for a single data-point Tu(w) — .
e.g. for linear regression n\W

the same is true for the partial derivatives w; ()— N Zn 1 awj

therefore VJ(w) =Ep[VJ,(w)]

In(w)

18

Stochastic Gradient Descent

ldea: use stochastic approximations VJ,(w) in gradient descent

stochastic gradient update
w <+ w— aVd,(w)

the steps are "on average" in the right
direction

each step is using gradient of
a different cost, J, (w)

each update is (1/N) of the
cost of batch gradient

e.g., for linear regression O(D)

VI, (w) = z™ (w2 — y)

contour plot of the cost function

batch gradient update
w+—w—aVJ(w)

with small learning rate: guaranteed
improvement at each step

https://jaykanidan.wordpress.com/

eeeeeeeeeeeeeeee

idea: schedule to have a smaller learning rate over time

https://cs231n.github.io/neural-networks-3/#anneal

IIIII

Oscillations

gradient descent can oscillate a lot!

3

each gradient step is prependicular to isocontours

/

in SGD this is worsened due to noisy gradient estimate

23

Momentum

to help with oscillations:

e use a running average of gradients
* more recent gradients should have higher weights

Aw' « BAwWE 4 (1 — B) VI (wit—1)

I
w{t} % w{t_]-} — Aw{t} momentum of 0 reduces to SGD

common value > .9

is effectively an exponential moving average

Awl™h = ST aT1(1 — B)V g (wh)

there are other variations of momentum with similar idea P

weight for the most recent gradient

weight for the oldest gradient

(1-8)
1-p)s""

t=1

24

Momentum

Example: logistic regression
no momentum with momentum

a=.5,8=0,|B =8 oo = 5,8 =99, |B| = 8

see the beautiful demo at Distill https://distill.pub/2017/momentum/ o5

https://distill.pub/2017/momentum/

Adag rad (Adaptive gradient)

use different learning rate for each parameter Wy
also make the learning rate adaptive

S{t} « S{t 1} 4 88 J(w{t 1})

sum of squares of derivatives over all iterations so far (for individual parameter)

w;{Zt} < w;{it_l} — 0 J(w{t L

/5 0

the learning rate is adapted to previous updates
€ is to avoid numerical issues

useful when parameters are updated at different rates

(e.g., sparse data when some features are often zero when using SGD) o6

eter
o= .1, 1,T = 80,000, ¢ =
t

)
m
N
DN _
oblem: the learning rate goes to zero

RMSprOp (Root Mean Squared propagation)

solve the problem of diminishing step-size with Adagrad

® US€E exponential moving average instead of sum (similar to momentum)

instead of Adagrad: S;l{t} — S;l{tfl} + LJ(w{t—l})2

owy

S 4 SUL 4 (1 — 4) VI (wlt1)?
with W{t_1} — 2 VJ(wit) identical to Adagrad

A/ St te

note that St} here is a vector and with the square root is element-wise

28

the default algorithm in practice
Ada m (Adaptive Moment Estimation)
two ideas so far:

1. use momentum to smooth out the oscillations

both use exponential moving averages
2. adaptive per-parameter learning rate

Adam combines the two:

M BlM{t—l} +(1- ﬁl)vj(w{t—l}) identical to method of momentum

(moving average of the first moment)
Sttt p,stt-1) 4 VJ (w12 identical to

R (moving average of the second moment)
w{t} {— w{t_l} .« M{t}
v/ S{th te

since M and S are initialized to be zero, at early stages they are biased towards zero

Mt i\l{ti g{t} . 1S{t}t for large time-steps it has no effect
—bi —b3 for small t, it scales up numerator 29

In practice

the list of methods is growing ...

they have recommended range of parameters

e learning rate, momentum etc.
still may need some hyper-parameter tuning

these are all first order methods

e they only need the first derivative
e 2nd order methods can be much more
effective, but also much more expensive

logistic regression example

2 %ff i] ¥ = 1
77 e —
7] — sgd
1y e ——— —]
_ = — momentum
0 .;:.,;; — — nag
—— adagrad \
-1k .-:};:-f' adadelta E
i — rmmsprop |
-2k I .
(i1
-3 f I [I| II
| i i
i fl:gliglillll :
_5 E 111 | \ || \ \ 1 | L
_3 -1 0 1 2 3 4 3
100 ' '
80
&0
40
20
D 1 1
0 20 40 80 100

60

image:Alec Radford

30

120

Summary

learning: optimizing the model parameters (minimizing a cost function)
use gradient descent to find local minimum

e easy to implement (esp. using automated differentiation)
o for convex functions gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient

e Robbins Monro condition: reduce the learning rate to help with the noise
better (stochastic) gradient optimization
e Momentum: exponential running average to help with the noise

e Adagrad & RMSProp: per parameter adaptive learning rate
e Adam: combining these two ideas

31

