
Applied Machine Learning
Gradient Descent Methods

Reihaneh Rabbany

COMP 551 (Fall 2025) 1



Basic idea of

gradient descent
stochastic gradient descent
method of momentum
using an adaptive learning rate
sub-gradient

Application to

linear regression and classification

Learning objectives

2



The core problem in ML is parameter
estimation (aka model fitting), which
requires solving an optimization
problem of the loss/cost function

Optimization in ML

discrete (combinatorial) vs continuous variables
constrained vs unconstrained
for continuous optimization in ML:

convex vs non-convex
looking for local vs global optima?
analytic gradient?
analytic Hessian?
stochastic vs batch
smooth vs non-smooth

bold marks
the settings
we consider
in this class

Optimization is a huge field
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The core problem in ML is parameter
estimation (aka model fitting), which
requires solving an optimization
problem of the loss/cost function

Optimization in ML
input
features
 

x
output
labels
 

ML algorithm
with parameters w

y
f(x;w)

w =∗ argmin J(w)w

J(w) = l(y , f(x ;w))
N
1 ∑n=1

N (n) (n)

=ŷ f (x) =w σ(w x) :⊤ R →D {0, 1}
Logistic Regression:

J =w −y log( ) −
N
1 ∑n ŷ(n) (1 − y ) log(1 −(n) )ŷ(n)
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=ŷ f (x) =w w x :⊤ R →D R
Linear Regression:

model:

J =w (y −
N
1 ∑n 2

1 (n) )ŷ(n) 2cost
function:

J =∂wd

∂
w ( −

N
1 ∑n ŷ(n) y )x(n)

d

(n)
partial derivatives:

∇J(w) = ( −
N
1 ∑n ŷ(n) y )x(n) (n)gradient: vector of all partial derivatives:

how to find 
given ?

w∗

∇J(w)
Dx1

Recall



 Gradient
for a multivariate function J(w ,w )0 1

partial derivatives instead of derivative

J(w ,w ) ≜∂w1
∂

0 1 limϵ→0 ϵ

J(w ,w +ϵ)−J(w ,w )0 1 0 1 w0
w1

J

= derivative when other vars. are fixed

gradient: vector of all partial derivatives

∇J(w) = [ J(w),⋯ J(w)]∂w1
∂

∂wD

∂ T

w1 w0

J
we can estimate this numerically if needed
(use small epsilon in the formula above)

Recall
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Gradient descent
an iterative algorithm for optimization

starts from some
update using gradient

 
converges to a local minima

w{0}

w ←{t+1} w −{t} α∇J(w ){t}

learning rate cost function
(for maximization : objective function )

image from here

steepest descent direction

∇J(w) = [ J(w),⋯ J(w)]∂w1
∂

∂wD

∂ T

new notation!

w0

w1

J
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Convex function
a convex subset of         intersects any line in
at most one line segment

RN

convexnot convex

a convex function is a function for which the epigraph is a convex set

epigraph: set of all points above the graph

f(λw + (1 − λ)w ) ≤′ λf(w) + (1 − λ)f(w ) 0 <′ λ < 1

w w′
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Minimum of a convex function
Convex functions are easier to minimize:

critical points are global minimum
gradient descent can find it w ←{t+1} w −{t} α∇J(w ){t}

J(w)

w

image from here

convex

w

non-convex: gradient descent may find a local optima

a concave function is a
negative of a convex function
(easy to maximize) 8

https://www.willamette.edu/~gorr/classes/cs449/momrate.html


Recognizing convex functions

a linear function is convex f(x) = w x⊤

f ≥
x2
d2 0 ∀xconvex if second derivative is positive everywhere

examples x , e , − log(x),−2d ax x

x log(x),x > 0

x ,x >a 0, a > 1

a constant function is convex f(x) = c
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Recognizing convex functions
sum of convex functions is convex

example 1:

J(w) = ∣∣Xw − y∣∣ =2
2 (w x −∑n

⊤ (n) y)2

example 2:

sum of squared errors

maximum of convex functions is convex

example 1:

example 2:

note this is not convex in x

f(y) = max x y =x∈[0,2]
3 4 8y4
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Recognizing convex functions

composition of convex functions is generally not convex

(− log(x))2example

however, if   are convex, and  is non-decreasing,
then  is convex

f , g g

g(f(x))

ef(x)example
for convex f

Composition with affine map (linear function) is also
convex, e.g.  if  is convexf(w x−⊤ y) f
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Recognizing convex functions

is the logistic regression cost function convex in model parameters (w)?

J(w) = y log (1 +
N
1 ∑n=1

N (n) e )+−w x⊤ (1 − y ) log (1 +(n) e )w x⊤

linear

checking second derivative

non-negative

 same argument

sum of convex functions

log(1 +∂z2
∂2 e ) =z ≥(1+e )−z 2

e−z 0
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Gradient for linear and logistic regression

in both cases:

linear regression: =ŷ w x⊤

logistic regression: =ŷ σ(w x)⊤

O(ND)time complexity:
(two matrix multiplications)

∇J(w) = x ( −
N
1 ∑n

(n) ŷ(n) y ) =(n) X ( − y)
N
1 ⊤ ŷ
D ×N N × 1 N × 1

recall

def gradient(x, y, w):
    N,D = x.shape
    yh = logistic(np.dot(x, w))
    grad = np.dot(x.T, yh - y) / N
    return grad

1
2
3
4
5

O(ND +2 D )3compared to the direct solution for linear regression:
gradient descent can be much faster for large D
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Gradient Descent

def GradientDescent(x, # N x D
                    y, # N 
                    lr=.01, # learning rate
                    eps=1e-2, # termination codition
                   ):   
    N,D = x.shape
    w = np.zeros(D)
    g = np.inf
    while np.linalg.norm(g) > eps:
        g = gradient(x, y, w)
        w = w - lr*g
    return w
  

1
2
3
4
5
6
7
8
9

10
11
12
13

 code on the previous page

implementing gradient descent is easy!

Some termination condition:

some max #iterations
small gradient
a small change in the objective
increasing error on validation set

early stopping (one way to avoid overfitting) 14



(x , −3x +(n) (n) noise)

GD for linear regression

y = −3x
y = wx

w = (X X) X y ≈T −1 T −3.2

using direct solution method

example
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data space

GD for linear regression

y = w x0

After 22 steps

w ={0} 0

w

J(w)

w ≈{22} −3.2

cost function

w ←{t+1} w −{t} .01∇J(w ){t}

example
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Learning rate
Learning rate has a significant effect on GD

too small: may take a long time to
converge

α

too large: it overshoots or even
diverges

α = .05

w

J(w)
α = .01

w

J(w)

example, D=2
linear regression
50 gradient steps

linear regression
example, D=1

do a grid search usually between 0.001 to .1 to find the right value, look at the training curves 17

slow, try larger

insta
ble,
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Good



we can write the cost function as an average over instances

Stochastic Gradient Descent

J(w) = J (w)
N
1 ∑n=1

N
n

 the same is true for the partial derivatives J(w) =∂wj

∂ J (w)
N
1 ∑n=1

N

∂wj

∂
n

cost for a single data-point
e.g. for linear regression J (w) =n (w x −2

1 T (n) y )(n) 2

therefore ∇J(w) = E [∇J (w)]D n
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Stochastic Gradient Descent

Idea: use stochastic approximations              in gradient descent∇J (w)n

w0

w1

batch gradient update

with small learning rate: guaranteed
improvement at each step

w ← w − α∇J(w)

images from herew0

w1

stochastic gradient update
w ← w − α∇J (w)n

the steps are "on average" in the right
direction

contour plot of the cost function 

each step is using gradient of
a different cost, J (w)n

19

each update is (1/N) of the
cost of batch gradient

∇J (w) =n x (w x −(n) ⊤ (n) y )(n)

e.g., for linear regression O(D)

https://jaykanidan.wordpress.com/


SGD for logistic regression
logistic regression for Iris dataset (D=2 ,              )α = .1

 batch gradient  stochastic gradient

example
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Convergence of SGD
stochastic gradients are not zero even at the optimum w
how to guarantee convergence?

idea: schedule to have a smaller learning rate over time

example α ={t} ,α =
t
10 {t} t−.51

the sequence we use should satisfy:
otherwise for large                          we can't reach the minimum∣∣w −{0} w ∣∣∗

the steps should go to zero

Robbins Monro

α =∑t=0
∞ {t} ∞

(α ) <∑t=0
∞ {t} 2 ∞

&

read more here 21

https://cs231n.github.io/neural-networks-3/#anneal


Minibatch SGD
use a minibatch to produce gradient estimates

GD full batch

∇J =B ∇J (w)∣B∣
1 ∑n∈B n

a subset of the datasetB ⊆ {1,… ,N}

SGD minibatch-size=16 SGD minibatch-size=1
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Oscillations
gradient descent can oscillate a lot!

each gradient step is prependicular to isocontours

in SGD this is worsened due to noisy gradient estimate
w0

w1

23



Momentum
to help with oscillations:

use a running average of gradients
more recent gradients should have higher weights

Δw ←{t} βΔw +{t−1} (1 − β)∇J (w )B
{t−1}

w ←{t} w −{t−1} αΔw{t} momentum of 0 reduces to SGD
common value >  .9

there are other variations of momentum with similar idea

is effectively an exponential moving average

Δw ={T} β (1 −∑t=1
T T−t β)∇J (w )B

{t}

weight for the oldest gradient (1 − β)βT−1

weight for the most recent gradient (1 − β)

24
t = 1t = T



Momentum
Example: logistic regression

α = .5,β = 0, ∣B∣ = 8
 no momentum

see the beautiful demo at Distill https://distill.pub/2017/momentum/

α = .5,β = .99, ∣B∣ = 8
with momentum

25

https://distill.pub/2017/momentum/


Adagrad (Adaptive gradient)

use different learning rate for each parameter
also make the learning rate adaptive

wd

S ←d
{t}

S +d
{t−1}

J(w )∂wd

∂ {t−1} 2

sum of squares of derivatives over all iterations so far (for individual parameter)

w ←d
{t}

w −d
{t−1}

J(w )
S +ϵd

{t}
α

∂wd

∂ {t−1}

the learning rate is adapted to previous updates
      is to avoid numerical issuesϵ

useful when parameters are updated at different rates
(e.g., sparse data when some features are often zero when using SGD)
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Adagrad (Adaptive gradient)

different learning rate for each parameter
make the learning rate adaptive

wd

problem: the learning rate goes to zero too quickly

α = .1, ∣B∣ = 1,T = 80, 000

SGD
Adagrad

α = .1, ∣B∣ = 1,T = 80, 000, ϵ = 1e− 8
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RMSprop
solve the problem of diminishing step-size with Adagrad

use exponential moving average instead of sum (similar to momentum)

S ←{t} γS +{t−1} (1 − γ)∇J(w ){t−1} 2

w ←{t} w −{t−1} ∇J(w )
S +ϵ{t}

α {t−1} identical to Adagrad

(Root Mean Squared propagation)

note that         here is a vector and with the square root is element-wiseS{t}

S ←d
{t}

S +d
{t−1}

J(w )∂wd

∂ {t−1} 2instead of Adagrad:
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Adam (Adaptive Moment Estimation)

two ideas so far:
1. use momentum to smooth out the oscillations
2. adaptive per-parameter learning rate

both use exponential moving averages

S ←{t} β S +2
{t−1} (1 − β )∇J(w )2

{t−1} 2 identical to RMSProp
(moving average of the second moment)

Adam combines the two:

M ←{t} β M +1
{t−1} (1 − β )∇J(w )1

{t−1} identical to method of momentum
(moving average of the first moment)

w ← w −{t} {t−1}

+ϵŜ{t}

α M̂ {t}

since M and S are initialized to be zero, at early stages they are biased towards zero

←M̂ {t}
1−β1

t
M {t}

←Ŝ{t} 1−β2
t

S{t} for large time-steps it has no effect
for small t, it scales up numerator 29

the default algorithm in practice



In practice

the list of methods is growing ...

image:Alec Radford

logistic regression example

they have recommended range of parameters

learning rate, momentum etc.
still may need some hyper-parameter tuning

these are all first order methods

they only need the first derivative
2nd order methods can be much more
effective, but also much more expensive
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Summary

learning: optimizing the model parameters (minimizing a cost function)

use gradient descent to find local minimum

easy to implement (esp. using automated differentiation)

for convex functions gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient

Robbins Monro condition: reduce the learning rate to help with the noise
better (stochastic) gradient optimization

Momentum: exponential running average to help with the noise
Adagrad & RMSProp: per parameter adaptive learning rate
Adam: combining these two ideas
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