Applied Machine Learning

Regularization

Reihaneh Rabbany

Learning objectives

- intuition for model complexity and overfitting
- regularization penalty (L1 & L2)
- probabilistic interpretation

Linear regression

model:

$$\hat{y} = f_w(x) = w^ op x \ : \mathbb{R}^D o \mathbb{R}$$

cost function:

$$J_w = rac{1}{N} \sum_n rac{1}{2} (y^{(n)} - \hat{y}^{(n)})^2 = rac{1}{2} ||y - Xw||^2$$

how to find
$$w^*$$
? Closed form solution: $w^* = (X^ op X)^{-1} X^ op y$

Or use gradient descent

partial derivatives:
$$\frac{\partial}{\partial w_d} J_w = \frac{1}{N} \sum_n (\hat{y}^{(n)} - y^{(n)}) x_d^{(n)}$$
 gradient (all partial derivatives):
$$\nabla J(w) = \frac{1}{N} \sum_n (\hat{y}^{(n)} - y^{(n)}) x^{(n)} = \frac{1}{N} X^\top (\hat{y} - y)$$
 repeat until stopping criterion:

optimization with gradient descent:

$$w^{\{t+1\}} \leftarrow w^{\{t\}} - lpha
abla J(w^{\{t\}})$$

what if **linear fit is not the best**?

how to increase the model's expressiveness?

⇒ use nonlinear basis to create new nonlinear features from the existing ones

Nonlinear basis functions

```
replace original features in f_w(x) = \sum_d w_d x_d
with nonlinear bases f_w(x) = \sum_d w_d \, \phi_d(x)
linear least squares solution \ (\Phi^	op\Phi)w^*=\Phi^	op y
replacing X with \Phi
```

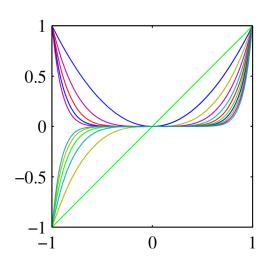
a (nonlinear) feature

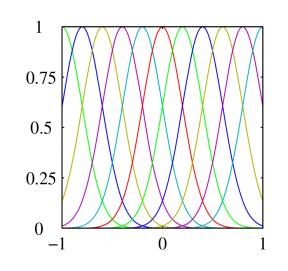
$$\Phi = egin{bmatrix} \phi_1(x^{(1)}), & \phi_2(x^{(1)}), & \cdots, & \phi_D(x^{(1)}) \ \phi_1(x^{(2)}), & \phi_2(x^{(2)}), & \cdots, & \phi_D(x^{(2)}) \ dots & dots & \ddots & dots \ \phi_1(x^{(N)}), & \phi_2(x^{(N)}), & \cdots, & \phi_D(x^{(N)}) \end{bmatrix}$$
 one instance

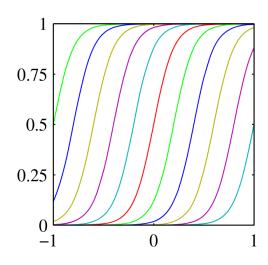
Nonlinear basis functions

examples

original input is scalar $\,x\in\mathbb{R}\,$







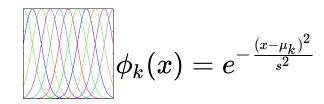
polynomial bases

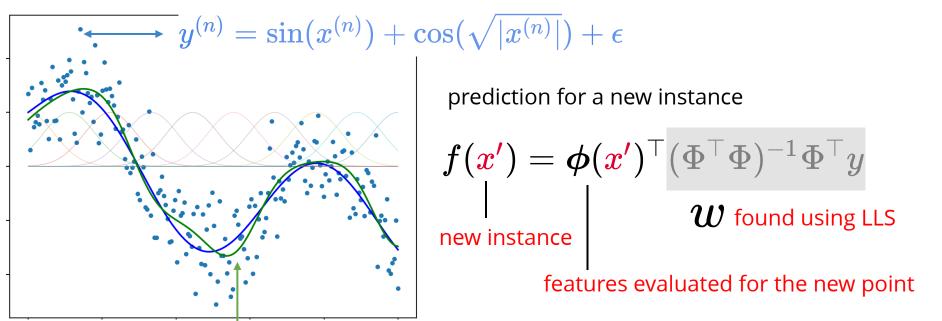
$$\phi_k(x) = x^k$$

Gaussian bases

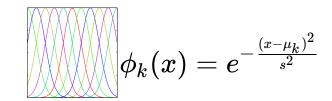
$$\phi_k(x)=e^{-rac{(x-\mu_k)^2}{s^2}}$$

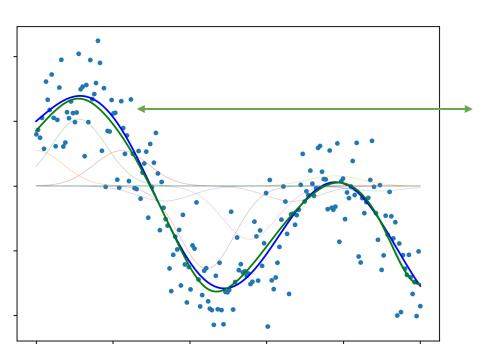
$$\phi_k(x) = rac{1}{1+e^{-rac{x-\mu_k}{2}}}$$





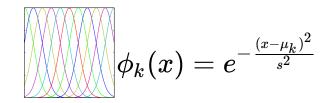
our fit to data using 10 Gaussian bases

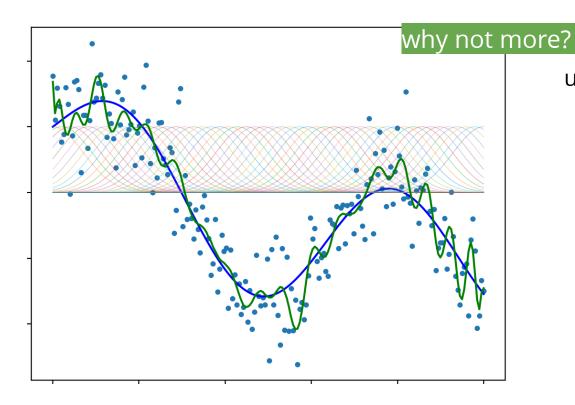




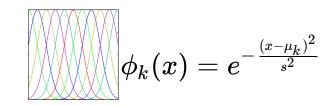
our fit to data using 10 Gaussian bases

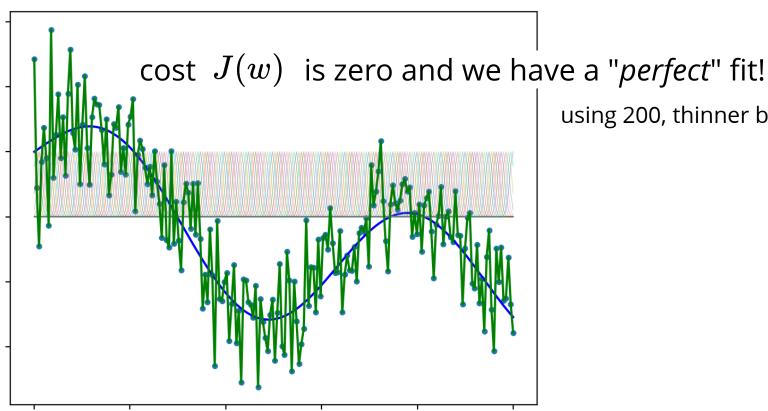
why not more?





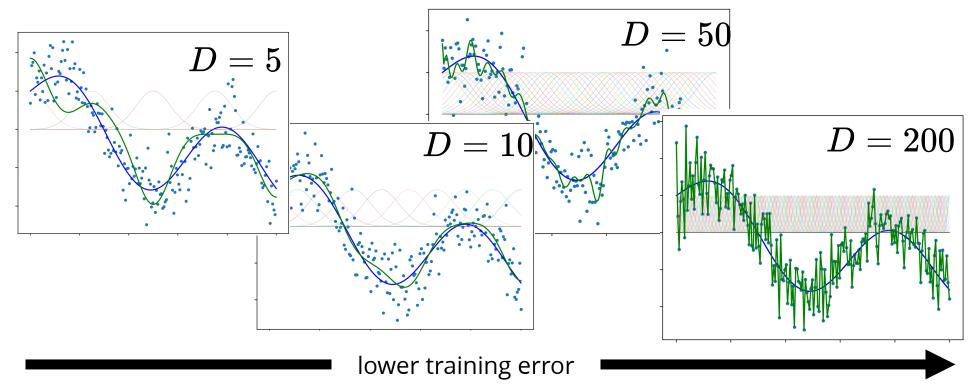
using 50 bases!





using 200, thinner bases (s=.1)

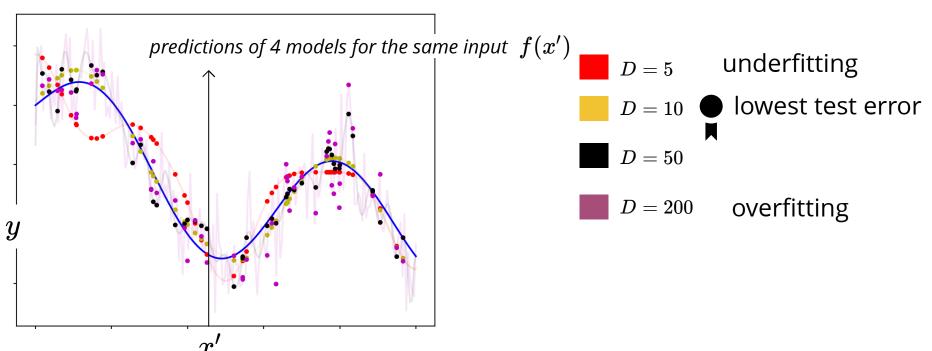
Generalization?



which one of these models performs better at test time?

Overfitting

which one of these models performs better at test time?

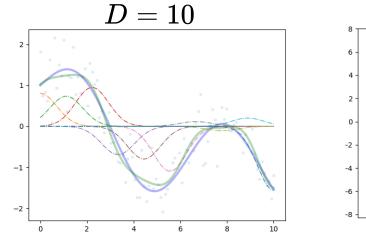


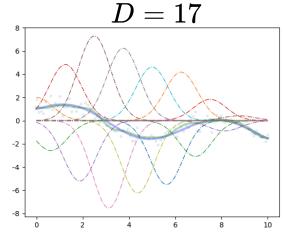
An observation

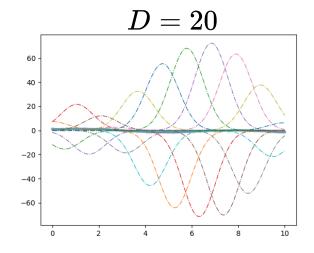
when overfitting, we sometimes see large weights

dashed lines are $\ w_d\phi_d(x) \quad orall d \qquad f_w(x) = \sum_d w_d \, \phi_d(x)$

$$f_w(x) = \sum_d w_d \, \phi_d(x)$$







idea: penalize large parameter values

Ridge regression

also known as

L2 regularized linear least squares regression:

$$J(w)=rac{1}{2}||Xw-y||_2^2+rac{\lambda}{2}||w||_2^2$$
 sum of squared error squared L2 norm of w $rac{1}{2}\sum_n(y^{(n)}-w^ op x)^2$ $w^Tw=\sum_d w_d^2$

regularization parameter $\;\lambda>0$ controls the strength of regularization a good practice is to **not** penalize the intercept $\;\lambda(||w||_2^2-w_0^2)$

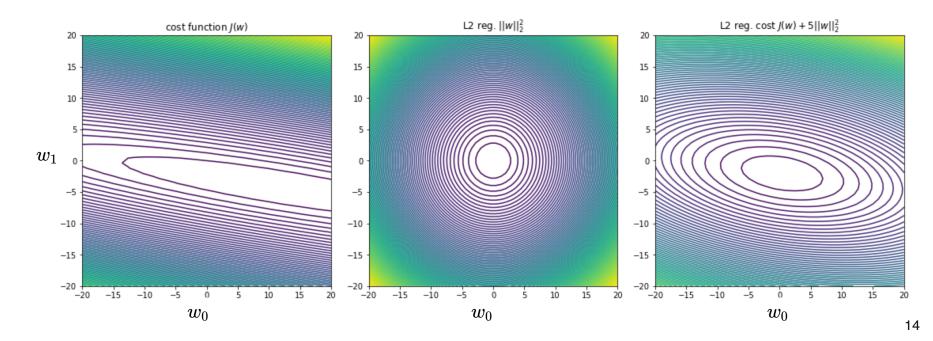
 λ is a hyper-parameter (use a validation set or cross-validation to pick the best value)

Ridge regression example

Visualizing the effect of regularization on the cost function

is the new cost function convex?

$$rac{1}{2N}\sum_{x,y\in\mathcal{D}}(y-w^ op x)^2 + rac{\lambda}{2}||w||_2^2$$



Ridge regression

set the derivative to zero $J(w)=rac{1}{2}\sum_{x,y\in\mathcal{D}}(y-w^{ op}x)^2+rac{\lambda}{2}w^{ op}w$ $abla J(w)=\sum_{x,y\in\mathcal{D}}x(w^{ op}x-y)+\lambda w$ $=X^{ op}(Xw-y)+rac{\lambda}{\lambda}w=0$

linear system of equations $(X^{ op}X + \lambda \mathbf{I})w = X^{ op}y$

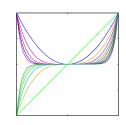
when using gradient descent, this term reduces the weights at each step (weight decay)

$$w = (X^ op X + \lambda \mathbf{I})^{-1} X^ op y$$

the only part different due to regularization

 λI makes it invertible, adds a small value to the diagonals $X^{ op}X$ we can have linearly dependent features the solution will be unique!

Example: polynomial bases

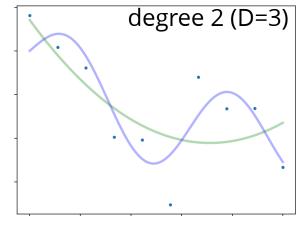


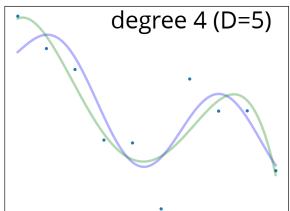
polynomial bases

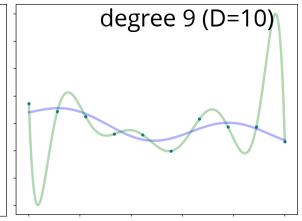
$$\phi_k(x) = x^k$$

Without regularization:

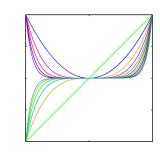
• using D=10 we can perfectly fit the data (high test error)







Example: polynomial bases

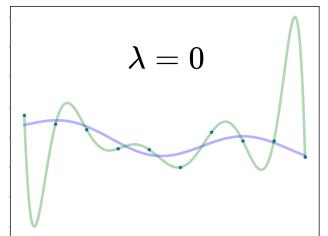


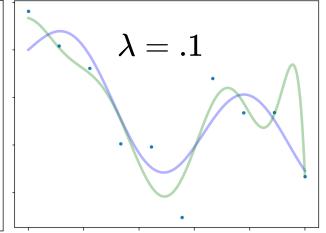
polynomial bases

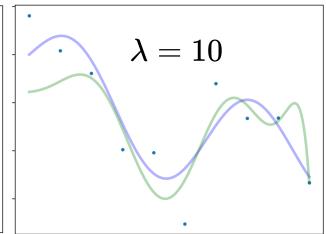
$$\phi_k(x) = x^k$$

with regularization:

• fixed D=10, changing the amount of regularization







Probabilistic interpretation

recall linear regression & logistic regression maximize log-likelihood

$$w^{MLE} = rg \max_w p(y|X,w)$$

linear regression
$$w^{MLE} = rg \max_{w} \prod_{x,y \in \mathcal{D}} \mathcal{N}ig(y|w^ op x, \sigma^2ig)$$

logistic regression
$$w^{MLE} = rg \max_{w} \prod_{x, y \in \mathcal{D}} \operatorname{Bernoulli}(y | \sigma(w^ op x))$$

can we do Bayesian inference instead of maximum likelihood?

$$p(w|y,X) \propto p(w)p(y|w,X)$$

posterior

prior likelihood

Maximum a Posteriori (MAP)

can we do Bayesian inference instead of maximum likelihood?

$$p(w|y,X) \propto p(w)p(y|w,X)$$

posterior

prior

likelihood

in general, this is expensive, but there's a cheap compromise:

MAP estimate
$$w^{MAP} = rg \max_{w} p(w) p(y|X,w)$$

$$= rg \max_{w} \log p(y|X,w) + \frac{\log p(w)}{\log p(w)}$$

all that is changing is the additional penalty on w

Gaussian Prior

MAP estimate
$$w^{MAP} = rg \max_w \log p(y|X,w) + \frac{\log p(w)}{\mathsf{prior}}$$

assume independent zero-mean Gaussians

$$\mathcal{N}(\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

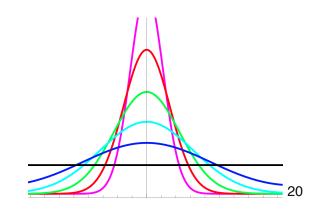
$$\log p(w) = \log \prod_{d=1}^D \mathcal{N}(w_d|0, au^2) = -\sum_d rac{w^2}{2 au^2} + ext{const.}$$

does not depend on w so it doesn't affect the optimization

lets call
$$rac{1}{ au^2} o \lambda$$

then we get the L2 regularization penalty $rac{\lambda}{2}||w||_2^2$

smaller variance of the prior au gives larger regularization λ



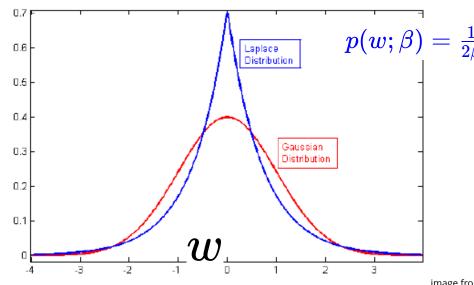
Laplace prior

another notable choice of prior is the Laplace distribution

L1 norm of w

L1 regularization: $J(w) \leftarrow J(w) + \lambda ||w||_1$ also called lasso

(least absolute shrinkage and selection operator)

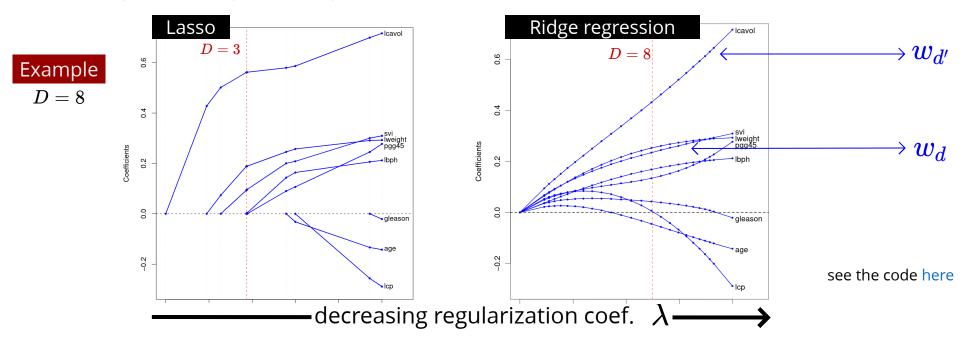


 $p(w;eta)=rac{1}{2eta}e^{-rac{|w|}{eta}}$ notice the peak around zero

21 image from here

$L_1 ext{ vs } L_2$ regularization

regularization path shows how $\{w_d\}$ change as we change λ Lasso produces sparse weights (many are zero, rather than small)

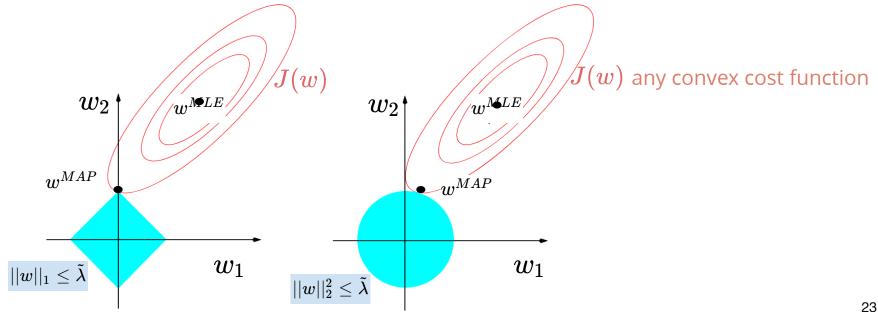


red-line is the optimal λ from cross-validation, for lasso the model uses only 3 of the 8 features

$L_1 ext{ vs } L_2$ regularization

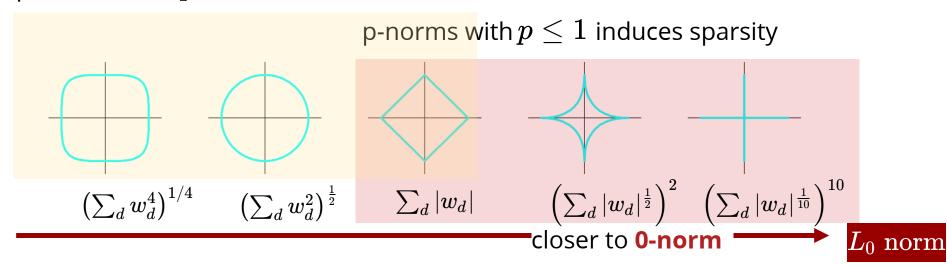
 $\min_w J(w) + \lambda ||w||_p^p$

is equivalent to $\min_w J(w)$ subject to $||w||_p^p \leq \tilde{\lambda}$ for an appropriate choice of $\tilde{\lambda}$ figures below show the constraint and the isocontours of J(w)optimal solution with L1-regularization is more likely to have zero components



Subset selection

p-norms with $p \geq 1$ are convex (easier to optimize)



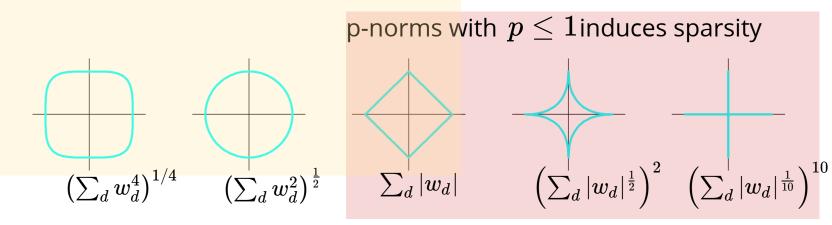
penalizes the **number of** features with non-zero weights

$$|J(w) + \lambda||w||_0 = J(w) + rac{\lambda}{\lambda} \sum_d \mathbb{I}(w_d
eq 0)$$

enforces a penalty of λ for each feature to be included in the model \Rightarrow performs feature selection

Subset selection

p-norms with $\,p \geq 1\,$ are convex (easier to optimize)



closer to **0-norm**

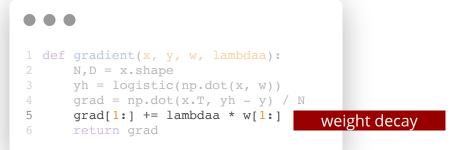
 L_0 norm

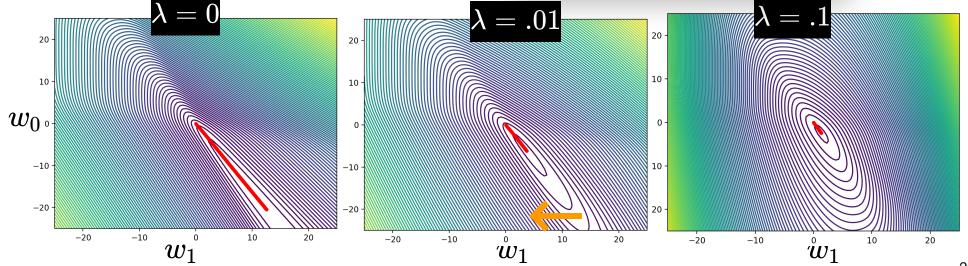
L1 regularization is a viable alternative to L0 regularization

optimizing l_0 regularization is a difficult *combinatorial problem*: search over all 2^D subsets

Adding L_2 regularization

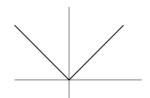
do not penalize the bias w_0 L2 penalty makes the optimization easier too! note that the optimal w_1 shrinks example for **logistic regression**





similar pattern for linear regression, see example in the colab

Sub-derivatives



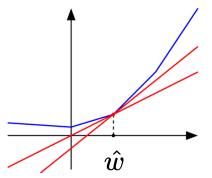
L1 penalty is no longer smooth or differentiable (at 0)

extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

$$\partial f(\hat{w}) = \left[\lim_{w o \hat{w}^-} rac{f(w) - f(\hat{w})}{w - \hat{w}}, \lim_{w o \hat{w}^+} rac{f(w) - f(\hat{w})}{w - \hat{w}}
ight]$$

if $extbf{ extit{f}}$ is differentiable at $\hat{ extbf{ extit{w}}}$ then sub-differential has one member $rac{d}{dw}f(\hat{w})$



another expression for sub-differential

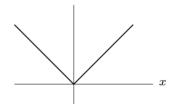
$$\partial f(\hat{w}) = \{g \in \mathbb{R} | \ f(w) > f(\hat{w}) + g(w - \hat{w}) \}$$

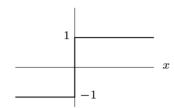
Subgradient

example

subdifferential for

$$f(w)=|w|$$





$$\partial f(0) = [-1,1]$$

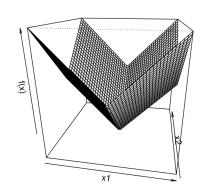
$$\partial f(w
eq 0) = \{ \mathrm{sign}(w) \}$$

recall, **gradient** was the vector of **partial derivatives subgradient** is a vector of **sub-derivatives**

subdifferential for functions of multiple variables

$$\partial f(\hat{w}) = \{g \in \mathbb{R}^D | f(w) > f(\hat{w}) + g^ op(w-\hat{w}) \}$$

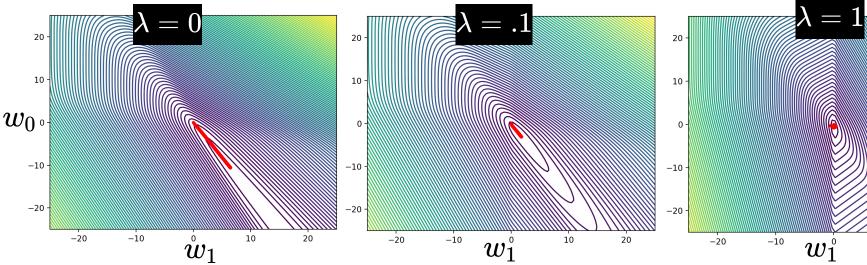
we can use sub-gradient with diminishing step-size for optimization

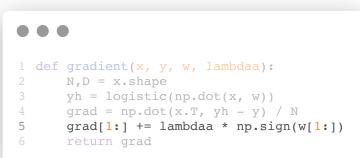


Adding L_1 regularization

L1-regularized *linear regression* has efficient solvers subgradient method for L1-regularized logistic regression do not penalize the bias w_0 using diminishing learning rate

note that the optimal w_1 becomes ${f 0}$





Regularization serves many purposes

$$egin{aligned} w^* &= (X^ op X)^{-1} X^ op y \ D imes 1 & D imes N & N imes D & N imes 1 \end{aligned}$$

what if $X^{T}X$ is **not invertible**? add a small value to the diagonals, a.k.a. **regularize**

what if **linear fit is not the best**?

use nonlinear basis

How to avoid **overfitting** then? **regularize**

what if **we want a sparse model**?

do feature selection and only keep important parameters with regularizing

Data normalization

what if we scale the input features, using different factors $\tilde{x_d}^{(n)} = \gamma_d x_d^{(n)} \forall d, n$ if we have no regularization: $ilde{w_d} = rac{1}{\gamma_d} w_d orall d$

everything remains the same because: $||Xw-y||_2^2=|| ilde{X} ilde{w}-y||_2^2$

with regularization: $||\tilde{w}||_2 \neq ||w||_2^2$ so the optimal **w** will be different! features of different mean and variance will be penalized differently

normalization
$$egin{cases} \mu_d = rac{1}{N} x_d^{(n)} \ \sigma_d^2 = rac{1}{N-1} (x_d^{(n)} - \mu_d)^2 \end{cases}$$

makes sure all features have the same mean and variance $~x_{ extcolor{d}}^{(n)} \leftarrow rac{x_{d}^{(n)} - \mu_{d}}{-}$ we saw that this also helps with the optimization!

Summary

- complex models can overfit to training data
- regularization avoids this by penalizing model complexity
 - L1 & L2 regularization
 - probabilistic interpretation: different priors on weights
 - L1 produces sparse solutions (useful for feature selection)