Multilayer Perceptron

Oumar Kaba

‘é T McGill

School of Computer Science

(Fall 2025)

Exam post mortem

Learning objectives

perceptron:

e model, objective, optimization
multilayer perceptron:

e model|

m different supervised learning tasks
m gctivation functions
m architecture of a neural network

e regularization techniques

Perceptron

historically a significant algorithm

(first neural network, or rather just a neuron)

biologically motivated model

.
™) N
| ¥ ;
. L
"—-'J‘, N ~ Step function
S, S, y 4)
R e = 6 e i
== |
S Weighterd
""}_-J SLIMT
Natural and
NEURON image:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html

artificial neurons

The brain’s neural
network is built from
living cells, neurons,
with advanced internal
machinery. They can
send signals to each
other through the
synapses. When we
learn things, the
connections between
some neurons gets
stronger, while others
get weaker.

SYNAPSE

STRONGER

WEAKER

THE NOBEL PRIZE
IN PHYSICS 2024

The Nobel Prize in Physics 2024

paUBI3 SEPIN SUOLRLSA|

The Nobel Prize &
@NobelPrize

©Johan Jarnestad/The Royal Swedish Acadermy o Sciences

Did you know that an artificial neural network is designed to mimic the .
brain? John J. Hopfield

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

Inspired by biological neurons in the brain, artificial neural networks are
large collections of “neurons”, or nodes, connected by “synapses”, or
weighted couplings, which are trained to perform certain tasks. An

TH

artificial neural network processes information using its entire network
structure. The inspiration initially came from the desire to understand

how the brain works.

Learn more about this year’s physics prize awarded for work on artificial

neural networks: bit.ly/3BiI9H8u

#NobelPrize

Natural and
artificial neurons

The brain’s neural
network is built from
living cells, neurons,
with advanced internal
machinery. They can
send signals to each
other through the
synapses. When we
learn things, the
connections between
some neurons gets
stronger, while others
get weaker.

NEURON

SYNAPSE

STRONGER

WEAKER

Artificial neural
networks are built
from nodes that are
coded with a value.

The nodes are
connected to each
other and, when the
network is trained, -
the connections H
between nodes that
are active at the

same time get
stronger, otherwi-

se they get

weaker.

©Johan Jarnestad/The Royal Swedish Academy of Sciences

Last edited 6:19 AM - Oct 8, 2024 - 423.8K Views

Memories are stored
in a landscape

John Hopfield's associative memory stores
information in a manner similar to shaping a
landscape. When the network is trained, it
creates a valley in a virtual energy landscape
for every saved pattern

ENERGY LEVEL

2

1 When the trained network is
fed with a distorted or

ball down a slope in this
landscape.

incomplete pattern, it can
j‘l be likened to dropping a

A ™

The ball rolls until it reaches a place
where it is surrounded by uphills. In the
same way, the network makes its way
towards lower energy and finds the
closest saved pattern

© Johan Jarnestad/The Royal Swedish Academy of Sciences

read more here

o

000000000000

https://www.nobelprize.org/uploads/2024/09/advanced-physicsprize2024.pdf

Perceptron

historically a significant algorithm

(first neural network, or rather just a neuron)

biologically motivated model

simple learning algorithm

convergence proof

beginning of connectionist Al

it's criticism in the book "Perceptrons" was a factor in Al winter

old implementation (1960's)

compare with models for

Model f(z) = sign(w'z + wo)

f(z) =w"z+ wpy

~ N f(z) = o(w'z +wo)
g, ,!—'L i P Stefunction

.,-_:;:.: :" Frees -..f'“'-lf‘ p— [)

g f N Wtad] note that we're using +1/-1 for labels rather than 0/1.

—— surm

image:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html

Perceptron: objective

g = sign(me(") + wp)

misclassified if y(™ 4™ <0, try to make it positive

label and prediction have different signs

T2 minimize —y™ (w " 2™ + wy)

T CII(n) this is positive for points that are
on the wrong side, minimize it
and push them to the right side

Zq

-
y=w x+ wy = wex2 +wixs +wyg =20

Perceptron: optimization

if y™g™ <0 minimize J,(w)=—y™ (w z™)

otherwise, do nothing

use stochastic gradient descent VJ,(w) = —y™z™

sign(w' z) = sign(cw')

Perceptron convergence theorem

the algorithm is guaranteed to converge in finite steps if linearly separable

Perceptron: example

2.5

iteration 10

Iris dataset
(linearly separable case)

6 if yh != y[n]:
7 w=w + y[n]*x[n,:]

note that the code is not checking for convergence

observations:
after finding a linear separator no further updates happen

the final boundary depends on the order of instances
(different from all previous methods)

Perceptron: example

"|'Iris dataset -: .- Iris dataset
(linearly separable case) | glélggrélgleeaggge)

converged at iteration 10 o o e .

the algorithm does
not converge

there is always a wrong
prediction and the weights
will be updated

10

Building more expressive model

Perceptron is not expressive enough, can not
model the data that is not linearly separable
(gets stuck in cyclic updates)

how to increase the model's expressiveness?

use fiXEd ﬂ0n|inear baseS similar to what we have seen before
use adaptive bases: learn the parameters of the bases as well

e e.g., inregression f(z)=>_,, Wnodm(T;vm)

There is an influential book on the S
limitations of the perceptrons, see here |

https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)

Adaptive GaUSSian Bases input has one dimension (D=1)

model: f(z;w) =), Wpnom(x)

cost: J(w) = l (f (x(n w) — y(n))2

the model is linear in its parameters
the cost is convex in w

<

we can make the bases adaptive by learning the centers

model: f(z;w, 1) = D2, Wi (5 i)

not convex in all model parameters
use gradient descent to find a local minimum

y

note that the basis centers are adaptively changing

T

adaptive case gives a better fit with the same number of bases (4)

12

Adaptive Sig mOid Bases input has one dimension (D=1)

model: f(z;w) =), Wpnom(x) rewrite the sigmoid basis
cost: J(w) =13 (f (x(n w) — y™)?2 O (z) = o(52=) = o (v + by)
the model is linear in its parameters model: f(z;w,v,b) = >, wno (VT + by)
the cost is convex in w optimize using gradient descent (find a local optima)

A Yy

Yy

w1 wpr
Wy
1 P2 o0 Bu
M
Om(2) = — =y

we have seen this before, centers (u,,) are fixed 4o © om adaptive case gives a better fit with the same number of bases (3)

Adaptive Sigmoid Bases: General Case

this is a neural network with two layers!!

each basis is the logistic regression model
dm(z) = o(v,x +bp) Ym

optimize V, W using gradient descent (find a local optima)

input has 1 dimension input has D dimension
9= 2 WmPm(z) g Wo(x) = >, wnpm()
¢1 = 0'(’011’ -+ bl) ¢1 ¢2 see ¢M » ¢1 (,’L‘) _ J(Q)Ix) ¢1 ¢2 . Q’)M V e RD+1)xM
Vm 7
Y 4 by = 0(Xq vaiza) >
b1
x 1 v, € R+Dx1 v € RO+xI x, T zp 1

this is the same as having a bias for each nonlinear basis 14

Multilayer Perceptron (MLP)

suppose we have

e Dinputs L1y+++3TD
e Coutputs Y1,---,9c
e M hidden units ?1y---32M ’
output (¥ b2 . Yo
e
hidden units (21 %2 oo 21
b =4 { 2um Wemh (2a Vmaza p=e=———h\
| | i T T 1
nonlinearity, activation function: we have different choices InpUt L 2 e D
more compressed form 4 e RO for simplicity we may drop bias terms
A V c RMXD
Yy = Q(W h(V m)) Z = h(Vz) € RMx1
non-linearities are applied elementwise W e RO*M

step function
T

Wizighter
HIG

15

Reg I‘eSSiOn using Neural Networks

the choice of activation function in the final layer depends on the task

= g(W h(V a:))

SO §=g(Wz) =Wz output (¥ (#2 e &C

e we may have one or more output variables w m

® no activation (identity function) hidden units |2 %) ven ZM 1

e |2 |oss = Gaussian likelihood
7 7 " Vv
L(y,9) = %Ily — 9|2 = —log N (y; §,I) + constant E% @;

input (%1 T2 zp 1

more generally
we may explicitly produce a distribution at output - e.g.,

* mean and variance of a Gaussian
e the loss will be the log-likelihood of the data under our model

L(y,9) = logp(y; /(7))

16

C|aSSificati0n using neural networks

the choice of activation function in the final layer depends on the task

= g(W h(V a:))

§g=9Wz) = 1w output
e scalar output C=1 W
e Qactivation function is logistic sigmoid _ _
e CE loss = Bernoulli likelihood hidden units
L(y,§) = —ylog§ — (1 —y)log(1 — §) = —log Bernoulli(y; §) v
input

g = g(Wz) = softmax(W z)

Cis the number of classes

softmax activation

multi-class cross entropy loss = categorical likelihood L(y,9) = — >_;, yx log g, = — log Categorical(y; §)

21

Tq

)

Activation function

for middle layer(s) there is more freedom in the choice of activation function

10:01 h(w) = identity (no activation function)
7:57 composition of two linear functions is linear
5.0
CxM MxD C xD
2.5+
WV W’
I — £
T T T T 00 T T T T v
-100 -7.5 50 =25 0[0 25 5.0 7.5 10.(W
_2.5]
SO Nothing is gained nrepresentation power) DY Stacking linear layers
—5.0
exception: if M < min(D,C) then the hidden layer is
—75 compressing the data w: is low-rank)
—10.0

18

. . . 7y = g(W h(Va:))
Activation function

for middle layer(s) there is more freedom in the choice of activation function

logistic function

the same function used in logistic regression
used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)
its derivative is easy to remember

0 . oh \
I P P P P T %‘7(37) =o(z)(1 - o(z)) \

1.004 g =100 -75 7—50 =25 0o 25 5077 75 10.0
0754

0.50

0.254

similar to sigmoid, but symmetric

o

The G5 S0 3o 25 o Wb o often better for optimization because close to zero it
o similar to a linear function (rather than an affine function when using logistic)
otk similar problem with vanishing gradient
) _ 2
Ao s-tanh(z) = 1 — tanh(z)

Activation function

for middle layer(s) there is more freedom in the choice of activation function

IEIEBEN (] Rectified Linear Unit (ReLU)
| replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"

4

initialization should ensure active units at the beginning of optimization

2

T T T T T T T T
-100 -75 -50 -25 0!0 2.5 5.0 7.5 10.0

Softplus (differentiable everywhere) h(w) _ log(l + ea:)
VLN (2) — max(0,z) + min(0, z) N it doesn't perform as well
in practice
E fixes the zero-gradient problem 67
parameteric ReLU: “
2 make 7y a learnable parameter >

00 -75 =50 =25 0!0 2.5 5.0 7.5 104 20

Network architecture

architecture is the overall structure of the network
feedforward network (aka multilayer perceptron)

e can have many layers
o # layersis called the depth of the network

e each layer can be fully connected (dense) or sparse

fully connected sparsely connected

all outputs of one layer's units are input to
all the next units

A = (WD 1)

output of one layer is input to the next

21

Network architecture

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

e can have many layers
e #layers is called the depth of the network P A A
e each layer can be fully connected (dense) or sparse R
* layers may have skip layer connections

* units may have different activations

. ~N
e parameters may be shared across units (eg, in conv-nets))(><
y N

e 055@0 more generally a directed acyclic graph (DAG) expresses the
X feed-forward architecture

22

Multilayer Perceptron

Recall Perceptron

I
T step function

J__

ID™ weighted
SLIFT

U= (Ed WLy + 'w())
/]\
(]

MwD Wy

input z1) Zp

(I T

wq

I
9,
0!
2
g
_|
8
+
S
e

Y

)
w1M %o
input i T2 1

sign"(z) = I(z > 0)

Heaviside sign function, which is 0
for 0 and negative values

** we drop this for simplicity, it is similar to
XTW,since w z is for one instance, however
we use them interchangably to show an affine

function of input instances

_ 1 I2
0 0 0]
0 1 1
= Yy =
10 1 101 0
1 1 0
- 0 0 1
_ Hxl
0 1
0 wo—fl _1_
1 0
T — To 1 —
w T 1 w' xr—1 0
2 1
0
sign®(w'z — 1) = 8
1

Both of these can not
correctly classify this data

23

input

Multilayer Perceptron

_'

1

)

2) T

3) T
)

T

—_
¥ N
=

@7

T

%

A

Yy
w1N
I 1) 1

Ir1 I2
00 0 1)
0 1 1
p— y:
1 0 1 101 0
1 1 0
0 1
0_ N
0 1
0 ’wo——l —1
1 0
T — T 1 —
w T 1 wx—1 0
2 1
0
. h T 0
sign(w'z — 1) = 0
1

Both of these can not
correctly classify this data

but together they
transform the data so
that it is linearly

separable
Lo
1)1 \
o 1
0] N
0 1
1 T2
0 0
o1
X=11 0
11

22

1 0

0_0 1 “
0 1
z1 | %9
0 0 0
10 _ |1
1 1 0

Multilayer Perceptron

Both of these can not

correctly classify this data
put a linear classifier on it

L but together they
0 0 0 o transform the data so
1 1 that it is linearly
S — cianf (] ») — T, _ |1 0
g = sign”(w ' z) = 1 wz=14 =11 o separable
0 —1 11 - 2

N
[\V]
o
—_
o
—_

/

|
—_

8

[y

3

[\

N

fah

g

| —
NS
Il
O = = O

1:

h(Vz)= |1
1_

Wh(Vez) = -1

T2
111 0
0/0 1

22

RN
L1 Lo
T 7

26

Multilayer Perceptron

- [_01 i ﬂ) H Vi — E V e RMD ¢ ROXM
! - 2m = h(Vimz) = h(Xg Vim,aza)
W =[0,1, 2] A
WVe) = h 2 Ok = 9(Wiz) = 9(20 Wem2m)
§=g(Wh(Vz) o
() Wh(Vz) = —1 2\ 2; /?Jro

. =<\
W Aw hidden units # 22 ves 2m 1
! =N

21 Vv

)
T 7 T
T 1

2 layers MLP

model any suitably smooth function, given enough hidden units, to any desired level of accuracy

g =g(Wh(Vz))

27

Multilayer Perceptron

By increasing the number of hidden units,

0 0 0 we can increase expressivity
Y Yo ... Yo
v X N
hidden units (21 e oo 21
v =N
input (%1 T2 .. @ 1
T 7 T Sherplane
2 layers MLP complex in low dimensions simple in higher dimensions

28

Multilayer Perceptron

model ang/éw\t/%tl)g/fsmooth function, given enough hidden units, to

/l\ /I\ /r any desir accuracy

4 Multilayer Feedforward Networks are

: : z Universal Approximators
hidden units # 2 oo 21 P
1% KURT HORNIK
Technische Universitat Wien
input (% T2 ... =zp 1
MAXWELL STINCHCOMBE AND HALBERT WHITE
/I\ /]\ /I\ University of California, San Diego
2 Iaye rs M LP (Received 16 Sepiember 1988: revised and accepted 9 March 1989)

Abstract— This paper rigorously establishes that standard multilayer feedforward networks with as few as one
hidden layer using arbitrary squashing functions are capable of approximating anv Borel measurable function
from ane finite dimensional space to another to any desired degree of accuracy, provided sufficiently many
hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximaiors.

Keywords—Feedforward networks, Universal approximation, Mapping networks, Network representation
capability. Stone-Weierstrass Theorem. Squashing functions, Sigma-Pi networks, Back-propagation networks.

1. INTRODUCTION any function encountered in applications leads one
to wonder about the ultimate capabilities of such

It has been nearly twenty vears since Minsky and
¥ L TR networks. Are the successes observed to date re-

Panert (1969) conclusivelv demonstrated that the

MNIST Example

classifying handwritten digits

see this video for better intuition
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2&t=7s

30

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2&t=7s

Expressive power

an MLP with single hidden layer can approximate any continuous function with arbitrary accuracy

Yy for 1D input we can see this even with fixed bases
| M =100 in this example
the fit is gOOd (hard to see the blue line)

however # bases (M) should grow exponentially
with D (curse of dimensionality)

Caveats of the universality

e we may need a very wide network (large M)
e this is only about training error, we care
about test error

Depth vs Width

Deep networks (with ReLU activation) of bounded width are also shown to be universal

e empirically, increasing the depth is often more effective than increasing the width (#¥parameters per layer)
e compositional functional form through depth is a useful inductive bias

increasing depth LI =R increasing the width (# parameters)

96.5 T T T T I 1 I 97 T T T ! !
96.0 — e—e 3 convolutional
e 5 %6 i
g 955 g +—+ 3, fully connected
-
g 950 A 95 |- V—V 11, convolutional [
. 94,
- 945 5 ol i
£ 940 5
g 935 S o3t M i
© .]
+ +
£ 93.0 17
2 £ ozt 1
92.5
| | | | 1 | 1 91 . . I I :
92.0
3 n 5 6 = 3 9 10 11 0.0 0.2 0.4 0.6 0.8 1.0 .
Number of layers Number of parameters x10

32

Depth vs Width

Deep networks (with ReLU activation) of bounded width are also shown to be universal

number of regions (in which the network is linear) grows exponentially with depth

h(Wz) = [W|

o o
0O
o

33

Regularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

data augmentation

noise robustness

early stopping

dropout

bagging

sparse representations (e.g., L1 penalty on hidden unit activations)
semi-supervised and multi-task learning

adversarial training

parameter-tying

34

Regularization using Data augmentation

a larger dataset results in a better generalization

example: in all 3 examples below training error is close to zero

however, a larger training dataset leads to better generalization

N =20 N =40 N =80

35

Regularization using Data augmentatlon

a larger dataset results in a better generalization

increase the size of dataset by adding reasonable transformations ()
that change the label in predictable ways; e.g., f(7(z)) = f(z)

special approaches to data-augmentation

e adding noise to the input
e adding noise to hidden units

= noise in higher level of abstraction

e learn a generative model p(, y) of the data
= use x("/),y("') ~ p for training

sometimes we can achieve the same goal by designing the
models that are invariant to a given set of transformations

image: https://github.com/aleju/imgaug/blob/master/README.md

36

https://www.youtube.com/watch?v=6zGHHTMme1Q

Regularization using Noise robustness

1. input (data augmentation)

2. hidden units (e.g., in dropout as we see soon)
3. Weights the cost is not sensitive to small changes in the weight (flat minima)

Training Function

.
| Testing Function

flat minima generalize better

good performance of SGD using small minibatch is attributed to converging to
| flat minima which generalizes better (train loss closer to test loss)

L in this case, SGD regularizes the model due to gradient noise

L '/' \v/
Flat Minimum Sharp Minimum

https://arxiv.org/pdf/1609.04836.pdf

37

image credit: Keshkar et al'17

https://arxiv.org/pdf/1609.04836.pdf

Regularization using Early stopping

%\ 0.20 T T I |
) e—e Training set loss
= . .
< 0.15H —— Validation set loss 4
v
&
9
- 010} i
g W
it
3]
=T4)
& 0.05F i
w
8
= 0.00 . - '
0 50 100 150 200 25

Time (epochs)

early stopping bounds the region of the parameter-space that is reachable in T time-steps

assuming

* bounded gradient
* starting with a small w

it has an effect similar to L2 regularization

we get the regularization

path (various)

the test loss-vs-time step is "often" U-shaped

use validation for early stopping

also saves computation!

&
3

w

early stopping

(= (=
L’ I—L
;@ S A
! /’h\\\

LB f,lr

NN Iy

~ P

38

Regularization using Dropout

randomly remove a subset of units during training

a) Standard Neural Net (b) After applying dropout. Base network

can be viewed as exponentially many subnetworks that share parameters
is one of the most effective regularization schemes for MLPs

dodgeh ;
)
S el
® 3@ ®
®)

Ensemble of subnetworks

39

Regularization using Dropout

After applying dropout.

during training 4) Standard Neural Net (®)
for each instance (n):
randomly dropout each unit with probability p (e.g., p=.5)

only the remaining subnetwork participates in training

at test time

ideally we want to average over the prediction of all possible sub-networks
this is computationally infeasible, instead:

1) Monte Carlo dropout: average the prediction of several feed-forward passes using dropout

2) weight scaling: scale the weights by p to compensate for dropout

e.g., for 50% dropout, scale by a factor of 2

either multiply by 2 in training or divide by 2 at the end of training
40

Interactive neural network training

Useful platform to visually experiment with training small networks

https://playground.tensorflow.org/

41

https://playground.tensorflow.org/

Summary

Deep feed-forward networks learn adaptive bases

more complex bases at higher layers

increasing depth is often preferable to width

various choices of activation function and architecture

universal approximation power

their expressive power often necessitates using regularization schemes

42

